home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Graphics Plus
/
Graphics Plus.iso
/
amiga
/
viewers
/
mpgplyr1.lha
/
src
/
video.c
< prev
next >
Wrap
C/C++ Source or Header
|
1992-12-08
|
91KB
|
3,350 lines
/*
* Copyright (c) 1992 The Regents of the University of California.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice and the following
* two paragraphs appear in all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
/* This file contains C code that implements
* the video decoder model.
*/
#include <stdio.h>
#include <assert.h>
#ifndef MIPS
#include <sys/time.h>
#else
#include <sys/types.h>
#include <sys/systm.h>
#endif
#include "decoders.h"
#include "video.h"
#include "util.h"
/* Declarations of functions. */
static void ReconIMBlock();
static void ReconPMBlock();
static void ReconBMBlock();
static void ReconBiMBlock();
static void ReconSkippedBlock();
static void DoPictureDisplay();
static int ParseSeqHead();
static int ParseGOP();
static int ParsePicture();
static int ParseSlice();
static int ParseMacroBlock();
static int ProcessSkippedPFrameMBlocks();
static int ProcessSkippedBFrameMBlocks();
extern int ditherType;
/* Macro for returning 1 if num is positive, -1 if negative, 0 if 0. */
#define Sign(num) ((num > 0) ? 1 : ((num == 0) ? 0 : -1))
/* Declare global pointer to vid stream used for current decoding. */
VidStream *curVidStream = NULL;
/* Set up array for fast conversion from zig zag order to row/column
coordinates.
*/
int zigzag[64][2] = {
0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 0, 3, 0, 2, 1, 1, 2, 0, 3, 0, 4, 1, 3,
2, 2, 3, 1, 4, 0, 5, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 0, 6, 1, 5, 2, 4,
3, 3, 4, 2, 5, 1, 6, 0, 7, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7,
1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6,
2, 7, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 7, 4, 6, 5, 5, 6, 4, 7, 5, 7, 6, 6,
7, 5, 7, 6, 6, 7, 7, 7 };
/* Array mapping zigzag to array pointer offset. */
int zigzag_direct[64] = {
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12,
19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35,
42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63};
/* Set up array for fast conversion from row/column coordinates to
zig zag order.
*/
int scan[8][8] = {
{ 0, 1, 5, 6, 14, 15, 27, 28},
{ 2, 4, 7, 13, 16, 26, 29, 42},
{ 3, 8, 12, 17, 25, 30, 41, 43},
{ 9, 11, 18, 24, 31, 40, 44, 53},
{ 10, 19, 23, 32, 39, 45, 52, 54},
{ 20, 22, 33, 38, 46, 51, 55, 60},
{ 21, 34, 37, 47, 50, 56, 59, 61},
{ 35, 36, 48, 49, 57, 58, 62, 63}};
/* Initialize P and B skip flags. */
static int No_P_Flag = 0;
static int No_B_Flag = 0;
/*
* We use a lookup table to make sure values stay in the 0..255 range.
* Since this is cropping (ie, x = (x < 0)?0:(x>255)?255:x; ), wee call this
* table the "crop table".
* MAX_NEG_CROP is the maximum neg/pos value we can handle.
*/
#define MAX_NEG_CROP 384
#define NUM_CROP_ENTRIES (256+2*MAX_NEG_CROP)
#define assertCrop(x) assert(((x) >= -MAX_NEG_CROP) && \
((x) <= 256+MAX_NEG_CROP))
static unsigned char cropTbl[NUM_CROP_ENTRIES];
/*
The following accounts for time and size spent in various parsing acitivites
if ANALYSIS has been defined.
*/
#ifdef ANALYSIS
unsigned int bitCount = 0;
int showmb_flag = 0;
int showEachFlag = 0;
typedef struct {
int frametype;
unsigned int totsize;
unsigned int number;
unsigned int i_mbsize;
unsigned int p_mbsize;
unsigned int b_mbsize;
unsigned int bi_mbsize;
unsigned int i_mbnum;
unsigned int p_mbnum;
unsigned int b_mbnum;
unsigned int bi_mbnum;
unsigned int i_mbcbp[64];
unsigned int p_mbcbp[64];
unsigned int b_mbcbp[64];
unsigned int bi_mbcbp[64];
unsigned int i_mbcoeff[64];
unsigned int p_mbcoeff[64];
unsigned int b_mbcoeff[64];
unsigned int bi_mbcoeff[64];
double tottime;
} Statval;
Statval stat_a[4];
unsigned int pictureSizeCount;
unsigned int mbSizeCount;
unsigned int *mbCBPPtr, *mbCoeffPtr, *mbSizePtr;
unsigned int cacheHit[8][8];
unsigned int cacheMiss[8][8];
void init_stat_struct(astat)
Statval *astat;
{
int j;
astat->frametype = 0;
astat->totsize = 0;
astat->number = 0;
astat->i_mbsize = 0;
astat->p_mbsize = 0;
astat->b_mbsize = 0;
astat->bi_mbsize = 0;
astat->i_mbnum = 0;
astat->p_mbnum = 0;
astat->b_mbnum = 0;
astat->bi_mbnum = 0;
for (j=0; j<64; j++) {
astat->i_mbcbp[j] = 0;
astat->p_mbcbp[j] = 0;
astat->b_mbcbp[j] = 0;
astat->bi_mbcbp[j] = 0;
astat->i_mbcoeff[j] = 0;
astat->p_mbcoeff[j] = 0;
astat->b_mbcoeff[j] = 0;
astat->bi_mbcoeff[j] = 0;
}
astat->tottime = 0.0;
}
void init_stats() {
int i, j;
for (i=0; i<4; i++) {
init_stat_struct(&(stat_a[i]));
stat_a[i].frametype = i;
}
for (i=0; i<8; i++) {
for (j=0; j<8; j++) {
cacheHit[i][j] = 0;
cacheMiss[i][j] = 0;
}
}
bitCount = 0;
}
void PrintOneStat()
{
int i;
printf( "\n");
switch (stat_a[0].frametype) {
case I_TYPE:
printf( "I FRAME\n");
break;
case P_TYPE:
printf( "P FRAME\n");
break;
case B_TYPE:
printf( "B FRAME\n");
break;
}
printf( "Size: %d bytes + %d bits\n", stat_a[0].totsize/8, stat_a[0].totsize%8);
if (stat_a[0].i_mbnum > 0) {
printf( "\tI Macro Block Stats:\n");
printf( "\t%d I Macroblocks\n", stat_a[0].i_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[0].i_mbsize/(8*stat_a[0].i_mbnum),
(stat_a[0].i_mbsize*stat_a[0].i_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].i_mbcbp[i],
stat_a[0].i_mbcbp[i+1], stat_a[0].i_mbcbp[i+2], stat_a[0].i_mbcbp[i+3],
stat_a[0].i_mbcbp[i+4], stat_a[0].i_mbcbp[i+5], stat_a[0].i_mbcbp[i+6],
stat_a[0].i_mbcbp[i+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].i_mbcoeff[i],
stat_a[0].i_mbcoeff[i+1], stat_a[0].i_mbcoeff[i+2],
stat_a[0].i_mbcoeff[i+3], stat_a[0].i_mbcoeff[i+4],
stat_a[0].i_mbcoeff[i+5], stat_a[0].i_mbcoeff[i+6],
stat_a[0].i_mbcoeff[i+7]);
}
}
if (stat_a[0].p_mbnum > 0) {
printf( "\tP Macro Block Stats:\n");
printf( "\t%d P Macroblocks\n", stat_a[0].p_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[0].p_mbsize/(8*stat_a[0].p_mbnum),
(stat_a[0].p_mbsize/stat_a[0].p_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].p_mbcbp[i],
stat_a[0].p_mbcbp[i+1], stat_a[0].p_mbcbp[i+2], stat_a[0].p_mbcbp[i+3],
stat_a[0].p_mbcbp[i+4], stat_a[0].p_mbcbp[i+5], stat_a[0].p_mbcbp[i+6],
stat_a[0].p_mbcbp[i+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].p_mbcoeff[i],
stat_a[0].p_mbcoeff[i+1], stat_a[0].p_mbcoeff[i+2],
stat_a[0].p_mbcoeff[i+3], stat_a[0].p_mbcoeff[i+4],
stat_a[0].p_mbcoeff[i+5], stat_a[0].p_mbcoeff[i+6],
stat_a[0].p_mbcoeff[i+7]);
}
}
if (stat_a[0].b_mbnum > 0) {
printf( "\tB Macro Block Stats:\n");
printf( "\t%d B Macroblocks\n", stat_a[0].b_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[0].b_mbsize/(8*stat_a[0].b_mbnum),
(stat_a[0].b_mbsize/stat_a[0].b_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].b_mbcbp[i],
stat_a[0].b_mbcbp[i+1], stat_a[0].b_mbcbp[i+2], stat_a[0].b_mbcbp[i+3],
stat_a[0].b_mbcbp[i+4], stat_a[0].b_mbcbp[i+5], stat_a[0].b_mbcbp[i+6],
stat_a[0].b_mbcbp[i+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].b_mbcoeff[i],
stat_a[0].b_mbcoeff[i+1], stat_a[0].b_mbcoeff[i+2],
stat_a[0].b_mbcoeff[i+3], stat_a[0].b_mbcoeff[i+4],
stat_a[0].b_mbcoeff[i+5], stat_a[0].b_mbcoeff[i+6],
stat_a[0].b_mbcoeff[i+7]);
}
}
if (stat_a[0].bi_mbnum > 0) {
printf( "\tBi Macro Block Stats:\n");
printf( "\t%d Bi Macroblocks\n", stat_a[0].bi_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[0].bi_mbsize/(8*stat_a[0].bi_mbnum),
(stat_a[0].bi_mbsize*stat_a[0].bi_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].bi_mbcbp[i],
stat_a[0].bi_mbcbp[i+1], stat_a[0].bi_mbcbp[i+2], stat_a[0].bi_mbcbp[i+3],
stat_a[0].bi_mbcbp[i+4], stat_a[0].bi_mbcbp[i+5], stat_a[0].bi_mbcbp[i+6],
stat_a[0].bi_mbcbp[i+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (i = 0; i<64; i+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].bi_mbcoeff[i],
stat_a[0].bi_mbcoeff[i+1], stat_a[0].bi_mbcoeff[i+2],
stat_a[0].bi_mbcoeff[i+3], stat_a[0].bi_mbcoeff[i+4],
stat_a[0].bi_mbcoeff[i+5], stat_a[0].bi_mbcoeff[i+6],
stat_a[0].bi_mbcoeff[i+7]);
}
}
printf( "\nTime to Decode: %g secs.\n", stat_a[0].tottime);
printf( "****************\n");
}
void PrintAllStats()
{
int i, j;
unsigned int supertot, supernum;
double supertime;
printf( "\n");
for (i=1; i<4; i++) {
if (stat_a[i].number == 0) continue;
switch (i) {
case 1:
printf( "I FRAMES\n");
break;
case 2:
printf( "P FRAMES\n");
break;
case 3:
printf( "B FRAMES\n");
break;
}
printf( "Number: %d\n", stat_a[i].number);
printf( "Avg. Size: %d bytes + %d bits\n",
stat_a[i].totsize/(8*stat_a[i].number), (stat_a[i].totsize/stat_a[i].number)%8);
if (stat_a[i].i_mbnum > 0) {
printf( "\tI Macro Block Stats:\n");
printf( "\t%d I Macroblocks\n", stat_a[i].i_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[i].i_mbsize/(8*stat_a[i].i_mbnum),
(stat_a[i].i_mbsize/stat_a[i].i_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].i_mbcbp[j],
stat_a[i].i_mbcbp[j+1], stat_a[i].i_mbcbp[j+2], stat_a[i].i_mbcbp[j+3],
stat_a[i].i_mbcbp[j+4], stat_a[i].i_mbcbp[j+5], stat_a[i].i_mbcbp[j+6],
stat_a[i].i_mbcbp[j+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].i_mbcoeff[j],
stat_a[i].i_mbcoeff[j+1], stat_a[i].i_mbcoeff[j+2],
stat_a[i].i_mbcoeff[j+3], stat_a[i].i_mbcoeff[j+4],
stat_a[i].i_mbcoeff[j+5], stat_a[i].i_mbcoeff[j+6],
stat_a[i].i_mbcoeff[j+7]);
}
}
if (stat_a[i].p_mbnum > 0) {
printf( "\tP Macro Block Stats:\n");
printf( "\t%d P Macroblocks\n", stat_a[i].p_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[i].p_mbsize/(8*stat_a[i].p_mbnum),
(stat_a[i].p_mbsize/stat_a[i].p_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].p_mbcbp[j],
stat_a[i].p_mbcbp[j+1], stat_a[i].p_mbcbp[j+2], stat_a[i].p_mbcbp[j+3],
stat_a[i].p_mbcbp[j+4], stat_a[i].p_mbcbp[j+5], stat_a[i].p_mbcbp[j+6],
stat_a[i].p_mbcbp[j+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].p_mbcoeff[j],
stat_a[i].p_mbcoeff[j+1], stat_a[i].p_mbcoeff[j+2],
stat_a[i].p_mbcoeff[j+3], stat_a[i].p_mbcoeff[j+4],
stat_a[i].p_mbcoeff[j+5], stat_a[i].p_mbcoeff[j+6],
stat_a[i].p_mbcoeff[j+7]);
}
}
if (stat_a[i].b_mbnum > 0) {
printf( "\tB Macro Block Stats:\n");
printf( "\t%d B Macroblocks\n", stat_a[i].b_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[i].b_mbsize/(8*stat_a[i].b_mbnum),
(stat_a[i].b_mbsize*stat_a[i].b_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].b_mbcbp[j],
stat_a[i].b_mbcbp[j+1], stat_a[i].b_mbcbp[j+2], stat_a[i].b_mbcbp[j+3],
stat_a[i].b_mbcbp[j+4], stat_a[i].b_mbcbp[j+5], stat_a[i].b_mbcbp[j+6],
stat_a[i].b_mbcbp[j+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].b_mbcoeff[j],
stat_a[i].b_mbcoeff[j+1], stat_a[i].b_mbcoeff[j+2],
stat_a[i].b_mbcoeff[j+3], stat_a[i].b_mbcoeff[j+4],
stat_a[i].b_mbcoeff[j+5], stat_a[i].b_mbcoeff[j+6],
stat_a[i].b_mbcoeff[j+7]);
}
}
if (stat_a[i].bi_mbnum > 0) {
printf( "\tBi Macro Block Stats:\n");
printf( "\t%d Bi Macroblocks\n", stat_a[i].bi_mbnum);
printf( "\tAvg. Size: %d bytes + %d bits\n",
stat_a[i].bi_mbsize/(8*stat_a[i].bi_mbnum),
(stat_a[i].bi_mbsize*stat_a[i].bi_mbnum)%8);
printf( "\t\tCoded Block Pattern Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].bi_mbcbp[j],
stat_a[i].bi_mbcbp[j+1], stat_a[i].bi_mbcbp[j+2], stat_a[i].bi_mbcbp[j+3],
stat_a[i].bi_mbcbp[j+4], stat_a[i].bi_mbcbp[j+5], stat_a[i].bi_mbcbp[j+6],
stat_a[i].bi_mbcbp[j+7]);
}
printf( "\n\t\tNumber of Coefficients/Block Histogram:\n");
for (j = 0; j<64; j+= 8) {
printf( "\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].bi_mbcoeff[j],
stat_a[i].bi_mbcoeff[j+1], stat_a[i].bi_mbcoeff[j+2],
stat_a[i].bi_mbcoeff[j+3], stat_a[i].bi_mbcoeff[j+4],
stat_a[i].bi_mbcoeff[j+5], stat_a[i].bi_mbcoeff[j+6],
stat_a[i].bi_mbcoeff[j+7]);
}
}
printf( "\nAvg. Time to Decode: %f secs.\n",
(stat_a[i].tottime/((double) stat_a[i].number)));
printf( "\n");
printf( "*************************\n\n");
}
supertot = stat_a[1].totsize + stat_a[2].totsize + stat_a[3].totsize;
supernum = stat_a[1].number + stat_a[2].number + stat_a[3].number;
supertime = stat_a[1].tottime + stat_a[2].tottime + stat_a[3].tottime;
printf( "Total Number of Frames: %d\n", supernum);
printf( "Avg Frame Size: %d bytes %d bits\n",
supertot/(8*supernum), (supertot/supernum)%8);
printf( "Total Time Decoding: %g secs.\n", supertime);
printf( "Avg Decoding Time/Frame: %g secs.\n", supertime/((double) supernum));
printf( "Avg Decoding Frames/Sec: %g secs.\n", ((double) supernum)/supertime);
printf( "\n");
printf("Cache Hits/Miss\n");
for (i=0; i<8; i++) {
printf("%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\n",
cacheHit[i][0], cacheMiss[i][0], cacheHit[i][1], cacheMiss[i][1],
cacheHit[i][2], cacheMiss[i][2], cacheHit[i][3], cacheMiss[i][3]);
printf("%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\n",
cacheHit[i][4], cacheMiss[i][4], cacheHit[i][5], cacheMiss[i][5],
cacheHit[i][6], cacheMiss[i][6], cacheHit[i][7], cacheMiss[i][7]);
}
}
static void CollectStats()
{
int i, j;
i = stat_a[0].frametype;
stat_a[i].totsize += stat_a[0].totsize;
stat_a[i].number += stat_a[0].number;
stat_a[i].i_mbsize += stat_a[0].i_mbsize;
stat_a[i].p_mbsize += stat_a[0].p_mbsize;
stat_a[i].b_mbsize += stat_a[0].b_mbsize;
stat_a[i].bi_mbsize += stat_a[0].bi_mbsize;
stat_a[i].i_mbnum += stat_a[0].i_mbnum;
stat_a[i].p_mbnum += stat_a[0].p_mbnum;
stat_a[i].b_mbnum += stat_a[0].b_mbnum;
stat_a[i].bi_mbnum += stat_a[0].bi_mbnum;
for (j=0; j<64; j++) {
stat_a[i].i_mbcbp[j] += stat_a[0].i_mbcbp[j];
stat_a[i].p_mbcbp[j] += stat_a[0].p_mbcbp[j];
stat_a[i].b_mbcbp[j] += stat_a[0].b_mbcbp[j];
stat_a[i].bi_mbcbp[j] += stat_a[0].bi_mbcbp[j];
stat_a[i].i_mbcoeff[j] += stat_a[0].i_mbcoeff[j];
stat_a[i].p_mbcoeff[j] += stat_a[0].p_mbcoeff[j];
stat_a[i].b_mbcoeff[j] += stat_a[0].b_mbcoeff[j];
stat_a[i].bi_mbcoeff[j] += stat_a[0].bi_mbcoeff[j];
}
stat_a[i].tottime += stat_a[0].tottime;
init_stat_struct(&(stat_a[0]));
}
unsigned int bitCountRead()
{
return bitCount;
}
StartTime()
{
stat_a[0].tottime = ReadSysClock();
}
EndTime()
{
stat_a[0].tottime = ReadSysClock() - stat_a[0].tottime;
}
#endif
double realTimeStart;
int totNumFrames = 0;
double
ReadSysClock ()
{
struct timeval tv;
(void) gettimeofday(&tv, NULL);
return (tv.tv_sec + tv.tv_usec / 1000000.0);
}
void PrintTimeInfo()
{
double spent;
spent = ReadSysClock()-realTimeStart;
printf( "\nReal Time Spent (After Initializations): %f secs.\n", spent);
printf( "Avg. Frames/Sec: %f\n", ((double) totNumFrames) / spent);
}
/*
*--------------------------------------------------------------
*
* NewVidStream --
*
* Allocates and initializes a VidStream structure. Takes
* as parameter requested size for buffer length.
*
* Results:
* A pointer to the new VidStream structure.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
VidStream *NewVidStream(bufLength)
int bufLength;
{
int i, j;
VidStream *new;
static unsigned char default_intra_matrix[64] = {
8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83 };
/* Check for legal buffer length. */
if (bufLength < 4)
return NULL;
/* Make buffer length multiple of 4. */
bufLength = (bufLength + 3) >> 2;
/* Allocate memory for new structure. */
new = (VidStream *) malloc(sizeof(VidStream));
/* Initialize pointers to extension and user data. */
new->group.ext_data = new->group.user_data =
new->picture.extra_info = new->picture.user_data =
new->picture.ext_data = new->slice.extra_info =
new->ext_data = new->user_data = NULL;
/* Copy default intra matrix. */
for (i=0; i<8; i++) {
for (j = 0; j<8; j++) {
new->intra_quant_matrix[j][i] = default_intra_matrix[i*8+j];
}
}
/* Initialize crop table. */
for (i=-MAX_NEG_CROP; i< NUM_CROP_ENTRIES - MAX_NEG_CROP; i++) {
if (i <= 0) {
cropTbl[i+MAX_NEG_CROP] = 0;
} else if (i >= 255) {
cropTbl[i+MAX_NEG_CROP] = 255;
} else {
cropTbl[i+MAX_NEG_CROP] = i;
}
}
/* Initialize non intra quantization matrix. */
for (i=0; i<8; i++) {
for (j=0; j<8; j++) {
new->non_intra_quant_matrix[j][i] = 16;
}
}
/* Initialize pointers to image spaces. */
new->current = new->past = new->future = NULL;
for (i=0; i<RING_BUF_SIZE; i++) {
new->ring[i] = NULL;
}
/* Create buffer. */
new->buf_start = (unsigned int *) malloc(bufLength*4);
/* Set max_buf_length to one less than actual length to
deal with messy data without proper seq. end codes.
*/
new->max_buf_length = bufLength - 1;
/* Initialize bitstream i/o fields. */
new->bit_offset = 0;
new->buf_length = 0;
new->buffer = new->buf_start;
/* Return structure. */
return new;
}
/*
*--------------------------------------------------------------
*
* DestroyVidStream --
*
* Deallocates a VidStream structure.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void DestroyVidStream(astream)
VidStream *astream;
{
int i;
if (astream->ext_data != NULL)
free(astream->ext_data);
if (astream->user_data != NULL)
free(astream->user_data);
if (astream->group.ext_data != NULL)
free(astream->group.ext_data);
if (astream->group.user_data != NULL)
free(astream->group.user_data);
if (astream->picture.extra_info != NULL)
free(astream->picture.extra_info);
if (astream->picture.ext_data != NULL)
free(astream->picture.ext_data);
if (astream->picture.user_data != NULL)
free(astream->picture.user_data);
if (astream->slice.extra_info != NULL)
free(astream->slice.extra_info);
if (astream->buf_start != NULL)
free(astream->buf_start);
for (i=0; i<RING_BUF_SIZE; i++) {
if (astream->ring[i] != NULL) {
DestroyPictImage(astream->ring[i]);
}
}
free((char *) astream);
}
/*
*--------------------------------------------------------------
*
* NewPictImage --
*
* Allocates and initializes a PictImage structure.
* The width and height of the image space are passed in
* as parameters.
*
* Results:
* A pointer to the new PictImage structure.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
PictImage *NewPictImage(width, height)
int width, height;
{
PictImage *new;
/* Allocate memory space for new structure. */
new = (PictImage *) malloc(sizeof(PictImage));
/* Allocate memory for image spaces. */
#ifdef SH_MEM
new->ximage = NULL;
if (shmemFlag) {
Visual *fc_visual;
int depth;
Visual *FindFullColorVisual();
if (ditherType == Twox2_DITHER) {
new->ximage = XShmCreateImage(display, None, 8, ZPixmap, NULL,
&(new->shminfo), width * 2, height *2);
} else if (ditherType == FULL_COLOR_DITHER) {
fc_visual = FindFullColorVisual(display, &depth);
new->ximage = XShmCreateImage (display, fc_visual, depth, ZPixmap,
NULL, &(new->shminfo), width, height);
} else if (ditherType == MONO_DITHER || ditherType == MONO_THRESHOLD) {
new->ximage = XShmCreateImage (display, None, 1, XYBitmap,
NULL, &(new->shminfo), width, height);
} else {
new->ximage = XShmCreateImage(display, None, 8, ZPixmap, NULL,
&(new->shminfo), width, height);
}
/* If no go, then revert to normal Xlib calls. */
if (new->ximage == NULL) {
shmemFlag = 0;
fprintf(stderr, "Shared memory error, disabling.\n");
fprintf(stderr, "Ximage error.\n");
goto shmemerror;
}
/* Success here, continue. */
new->shminfo.shmid = shmget(IPC_PRIVATE, (new->ximage->bytes_per_line *
new->ximage->height),
IPC_CREAT|0777);
if (new->shminfo.shmid < 0) {
XDestroyImage(new->ximage);
new->ximage = NULL;
shmemFlag = 0;
fprintf(stderr, "Shared memory error, disabling.\n");
fprintf(stderr, "Seg. id. error.\n");
goto shmemerror;
}
new->shminfo.shmaddr = (char *) shmat(new->shminfo.shmid, 0, 0);
if (new->shminfo.shmaddr == ((char *) -1)) {
XDestroyImage(new->ximage);
new->ximage = NULL;
shmemFlag = 0;
fprintf(stderr, "Shared memory error, disabling.\n");
fprintf(stderr, "Address error.\n");
goto shmemerror;
}
new->ximage->data = new->shminfo.shmaddr;
new->display = (unsigned char *) new->ximage->data;
new->shminfo.readOnly = False;
XShmAttach(display, &(new->shminfo));
XSync(display, False);
if (gXErrorFlag) {
/* Ultimate failure here. */
XDestroyImage(new->ximage);
new->ximage = NULL;
shmemFlag = 0;
fprintf(stderr, "Shared memory error, disabling.\n");
gXErrorFlag = 0;
goto shmemerror;
}
fprintf(stderr, "Sharing memory.\n");
}
else
#endif
{
shmemerror:
if ((ditherType == Twox2_DITHER) || (ditherType == FULL_COLOR_DITHER)) {
new->display = (unsigned char *) malloc(width*height*4);
} else {
new->display = (unsigned char *) malloc(width*height);
}
}
new->luminance = (unsigned char *) malloc(width*height);
new->Cr = (unsigned char *) malloc(width*height/4);
new->Cb = (unsigned char *) malloc(width*height/4);
/* Reset locked flag. */
new->locked = 0;
/* Return pointer to new structure. */
return new;
}
/*
*--------------------------------------------------------------
*
* DestroyPictImage --
*
* Deallocates a PictImage structure.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void DestroyPictImage(apictimage)
PictImage *apictimage;
{
if (apictimage->luminance != NULL) {
free(apictimage->luminance);
}
if (apictimage->Cr != NULL) {
free(apictimage->Cr);
}
if (apictimage->Cb != NULL) {
free(apictimage->Cb);
}
#ifdef SH_MEM
if (apictimage->ximage != NULL) {
XShmDetach(display, &(apictimage->shminfo));
XDestroyImage(apictimage->ximage);
shmdt(apictimage->shminfo.shmaddr);
shmctl(apictimage->shminfo.shmid, IPC_RMID, 0);
apictimage->ximage = NULL;
apictimage->display = NULL;
}
#endif
if (apictimage->display != NULL) {
free(apictimage->display);
}
}
/*
*--------------------------------------------------------------
*
* mpegVidRsrc --
*
* Parses bit stream until MB_QUANTUM number of
* macroblocks have been decoded or current slice or
* picture ends, whichever comes first. If the start
* of a frame is encountered, the frame is time stamped
* with the value passed in time_stamp. If the value
* passed in buffer is not null, the video stream buffer
* is set to buffer and the length of the buffer is
* expected in value passed in through length. The current
* video stream is set to vid_stream. If vid_stream
* is passed as NULL, a new VidStream structure is created
* and initialized and used as the current video stream.
*
* Results:
* A pointer to the video stream structure used.
*
* Side effects:
* Bit stream is irreversibly parsed. If a picture is completed,
* a function is called to display the frame at the correct time.
*
*--------------------------------------------------------------
*/
VidStream *mpegVidRsrc(time_stamp, vid_stream)
TimeStamp time_stamp;
VidStream *vid_stream;
{
static int first = 1;
unsigned int data;
int i, status;
/* If vid_stream is null, create new VidStream structure. */
if (vid_stream == NULL) {
return NULL;
}
/* Set global curVidStream to vid_stream. Necessary because bit i/o
use curVidStream and are not passed vid_stream. Also set global
bitstream parameters.
*/
curVidStream = vid_stream;
curBits = *curVidStream->buffer;
bitOffset = curVidStream->bit_offset;
bufLength = curVidStream->buf_length;
bitBuffer = curVidStream->buffer;
/* If called for the first time, find start code, make sure it is a
sequence start code.
*/
if (first) {
next_start_code();
show_bits32(&data);
if (data != SEQ_START_CODE) {
fprintf(stderr, "This is not an MPEG stream.");
DestroyVidStream(curVidStream);
exit(1);
}
first = 0;
}
/* Get next 32 bits (size of start codes). */
show_bits32(&data);
/* Process according to start code (or parse macroblock if not a
start code at all.
*/
switch (data) {
case SEQ_END_CODE:
/*Sequence done. Do the right thing. For right now, exit. */
fprintf(stderr, "\nDone!\n");
#ifdef ANALYSIS
PrintAllStats();
#endif
PrintTimeInfo();
if (loopFlag) longjmp(env, 1);
DestroyVidStream(curVidStream);
exit();
break;
case SEQ_START_CODE:
/* Sequence start code. Parse sequence header. */
if (ParseSeqHead(vid_stream) != PARSE_OK)
goto error;
/* Return after sequence start code so that application above can
use info in header.
*/
goto done;
case GOP_START_CODE:
/* Group of Pictures start code. Parse gop header. */
if (ParseGOP(vid_stream) != PARSE_OK)
goto error;
case PICTURE_START_CODE:
/* Picture start code. Parse picture header and first slice header. */
status = ParsePicture(vid_stream, time_stamp);
if (status == SKIP_PICTURE) {
next_start_code();
fprintf(stderr, "Skipping picture...");
while (!next_bits(32, PICTURE_START_CODE)) {
if (next_bits(32, GOP_START_CODE)) break;
else if (next_bits(32, SEQ_END_CODE)) break;
flush_bits(24);
next_start_code();
}
fprintf(stderr, "Done.\n");
goto done;
}
else if (status != PARSE_OK)
goto error;
if (ParseSlice(vid_stream) != PARSE_OK)
goto error;
break;
default:
/* Check for slice start code. */
if ((data >= SLICE_MIN_START_CODE) && (data <= SLICE_MAX_START_CODE)) {
/* Slice start code. Parse slice header. */
if (ParseSlice(vid_stream) != PARSE_OK)
goto error;
}
break;
}
/* Parse next MB_QUANTUM macroblocks. */
for(i=0; i< MB_QUANTUM; i++) {
/* Check to see if actually a startcode and not a macroblock. */
if (!next_bits(23, 0x00000000)) {
/* Not start code. Parse Macroblock. */
if (ParseMacroBlock(vid_stream) != PARSE_OK)
goto error;
#ifdef ANALYSIS
if (showmb_flag) {
DoDitherImage(vid_stream->current->luminance, vid_stream->current->Cr,
vid_stream->current->Cb, vid_stream->current->display,
vid_stream->mb_height*16, vid_stream->mb_width*16);
ExecuteDisplay(vid_stream);
}
#endif
}
else {
/* Not macroblock, actually start code. Get start code. */
next_start_code();
show_bits32(&data);
/* If start code is outside range of slice start codes, frame
is complete, display frame.
*/
if ((data < SLICE_MIN_START_CODE) || (data > SLICE_MAX_START_CODE)) {
#ifdef ANALYSIS
EndTime();
stat_a[0].totsize += bitCountRead() - pictureSizeCount;
if (showEachFlag) {
PrintOneStat();
};
CollectStats();
#endif
DoPictureDisplay(vid_stream);
}
break;
}
}
/* Return pointer to video stream structure. */
goto done;
error:
fprintf(stderr, "Error!!!!\n");
next_start_code();
goto done;
done:
/* Copy global bit i/o variables back into vid_stream. */
vid_stream->buffer = bitBuffer;
vid_stream->buf_length = bufLength;
vid_stream->bit_offset = bitOffset;
return vid_stream;
}
/*
*--------------------------------------------------------------
*
* ParseSeqHead --
*
* Assumes bit stream is at the begining of the sequence
* header start code. Parses off the sequence header.
*
* Results:
* Fills the vid_stream structure with values derived and
* decoded from the sequence header. Allocates the pict image
* structures based on the dimensions of the image space
* found in the sequence header.
*
* Side effects:
* Bit stream irreversibly parsed off.
*
*--------------------------------------------------------------
*/
static int
ParseSeqHead(vid_stream)
VidStream *vid_stream;
{
unsigned int data;
int i;
/* Flush off sequence start code. */
flush_bits(32);
/* Get horizontal size of image space. */
get_bits12(&data);
vid_stream->h_size = data;
/* Get vertical size of image space. */
get_bits12(&data);
vid_stream->v_size = data;
/* Calculate macroblock width and height of image space. */
vid_stream->mb_width = (vid_stream->h_size+15)/16;
vid_stream->mb_height = (vid_stream->v_size+15)/16;
/* Initialize ring buffer of pict images now that dimensions
of image space are known.
*/
#ifdef SH_MEM
if (display != NULL) {
InstallXErrorHandler();
}
#endif
if (vid_stream->ring[0] == NULL) {
for(i=0; i<RING_BUF_SIZE; i++) {
vid_stream->ring[i] = NewPictImage(vid_stream->mb_width*16,
vid_stream->mb_height*16);
}
}
#ifdef SH_MEM
if (display != NULL) {
DeInstallXErrorHandler();
}
#endif
/* Parse of aspect ratio code. */
get_bits4(&data);
vid_stream->aspect_ratio = (unsigned char) data;
/* Parse off picture rate code. */
get_bits4(&data);
vid_stream->picture_rate = (unsigned char) data;
/* Parse off bit rate. */
get_bits18(&data);
vid_stream->bit_rate = data;
/* Flush marker bit. */
flush_bits(1);
/* Parse off vbv buffer size. */
get_bits10(&data);
vid_stream->vbv_buffer_size = data;
/* Parse off contrained parameter flag. */
get_bits1(&data);
if (data) {
vid_stream->const_param_flag = TRUE;
} else vid_stream->const_param_flag = FALSE;
/* If intra_quant_matrix_flag set, parse off intra quant matrix
values.
*/
get_bits1(&data);
if (data) {
for(i=0; i<64; i++) {
get_bits8(&data);
vid_stream->intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] =
(unsigned char) data;
}
}
/* If non intra quant matrix flag set, parse off non intra quant matrix
values.
*/
get_bits1(&data);
if (data) {
for (i=0; i<64; i++) {
get_bits8(&data);
vid_stream->non_intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] =
(unsigned char) data;
}
}
/* Go to next start code. */
next_start_code();
/* If next start code is extension start code, parse off extension
data.
*/
if (next_bits(32, EXT_START_CODE)) {
flush_bits(32);
if (vid_stream->ext_data != NULL) {
free(vid_stream->ext_data);
vid_stream->ext_data = NULL;
}
vid_stream->ext_data = get_ext_data();
}
/* If next start code is user start code, parse off user data. */
if (next_bits(32, USER_START_CODE)) {
flush_bits(32);
if (vid_stream->user_data != NULL) {
free(vid_stream->user_data);
vid_stream->user_data = NULL;
}
vid_stream->user_data = get_ext_data();
}
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParseGOP --
*
* Parses of group of pictures header from bit stream
* associated with vid_stream.
*
* Results:
* Values in gop header placed into video stream structure.
*
* Side effects:
* Bit stream irreversibly parsed.
*
*--------------------------------------------------------------
*/
static int
ParseGOP(vid_stream)
VidStream *vid_stream;
{
unsigned int data;
/* Flush group of pictures start code. WWWWWWOOOOOOOSSSSSSHHHHH!!! */
flush_bits(32);
/* Parse off drop frame flag. */
get_bits1(&data);
if(data) {
vid_stream->group.drop_flag = TRUE;
} else vid_stream->group.drop_flag = FALSE;
/* Parse off hour component of time code. */
get_bits5(&data);
vid_stream->group.tc_hours = data;
/* Parse off minute component of time code. */
get_bits6(&data);
vid_stream->group.tc_minutes = data;
/* Flush marker bit. */
flush_bits(1);
/* Parse off second component of time code. */
get_bits6(&data);
vid_stream->group.tc_seconds = data;
/* Parse off picture count component of time code. */
get_bits6(&data);
vid_stream->group.tc_pictures = data;
/* Parse off closed gop and broken link flags. */
get_bits2(&data);
if (data > 1) {
vid_stream->group.closed_gop = TRUE;
if (data > 2) {
vid_stream->group.broken_link = TRUE;
} else vid_stream->group.broken_link = FALSE;
} else {
vid_stream->group.closed_gop = FALSE;
if (data) {
vid_stream->group.broken_link = TRUE;
} else vid_stream->group.broken_link = FALSE;
}
/* Goto next start code. */
next_start_code();
/* If next start code is extension data, parse off extension data. */
if (next_bits(32, EXT_START_CODE)) {
flush_bits(32);
if (vid_stream->group.ext_data != NULL) {
free(vid_stream->group.ext_data);
vid_stream->group.ext_data = NULL;
}
vid_stream->group.ext_data = get_ext_data();
}
/* If next start code is user data, parse off user data. */
if (next_bits(32, USER_START_CODE)) {
flush_bits(32);
if (vid_stream->group.user_data != NULL) {
free(vid_stream->group.user_data);
vid_stream->group.user_data = NULL;
}
vid_stream->group.user_data = get_ext_data();
}
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParsePicture --
*
* Parses picture header. Marks picture to be presented
* at particular time given a time stamp.
*
* Results:
* Values from picture header put into video stream structure.
*
* Side effects:
* Bit stream irreversibly parsed.
*
*--------------------------------------------------------------
*/
static int
ParsePicture(vid_stream, time_stamp)
VidStream *vid_stream;
TimeStamp time_stamp;
{
unsigned int data;
int i;
/* Flush header start code. */
flush_bits(32);
/* Parse off temporal reference. */
get_bits10(&data);
vid_stream->picture.temp_ref = data;
/* Parse of picture type. */
get_bits3(&data);
vid_stream->picture.code_type = data;
if ((vid_stream->picture.code_type == B_TYPE) && (No_B_Flag ||
(vid_stream->past == NULL) ||
(vid_stream->future == NULL)))
return SKIP_PICTURE;
if ((vid_stream->picture.code_type == P_TYPE) && (No_P_Flag ||
(vid_stream->future == NULL)))
return SKIP_PICTURE;
#ifdef ANALYSIS
StartTime();
stat_a[0].frametype = vid_stream->picture.code_type;
stat_a[0].number = 1;
stat_a[0].totsize = 45;
pictureSizeCount = bitCountRead();
#endif
/* Parse off vbv buffer delay value. */
get_bits16(&data);
vid_stream->picture.vbv_delay = data;
/* If P or B type frame... */
if ((vid_stream->picture.code_type == 2) || (vid_stream->picture.code_type == 3)) {
/* Parse off forward vector full pixel flag. */
get_bits1(&data);
if (data) vid_stream->picture.full_pel_forw_vector = TRUE;
else vid_stream->picture.full_pel_forw_vector = FALSE;
/* Parse of forw_r_code. */
get_bits3(&data);
/* Decode forw_r_code into forw_r_size and forw_f. */
vid_stream->picture.forw_r_size = data - 1;
vid_stream->picture.forw_f = (1 << vid_stream->picture.forw_r_size);
}
/* If B type frame... */
if (vid_stream->picture.code_type == 3) {
/* Parse off back vector full pixel flag. */
get_bits1(&data);
if (data) vid_stream->picture.full_pel_back_vector = TRUE;
else vid_stream->picture.full_pel_back_vector = FALSE;
/* Parse off back_r_code. */
get_bits3(&data);
/* Decode back_r_code into back_r_size and back_f. */
vid_stream->picture.back_r_size = data -1;
vid_stream->picture.back_f = (1 << vid_stream->picture.back_r_size);
}
/* Get extra bit picture info. */
if (vid_stream->picture.extra_info != NULL) {
free(vid_stream->picture.extra_info);
vid_stream->picture.extra_info = NULL;
}
vid_stream->picture.extra_info = get_extra_bit_info();
/* Goto next start code. */
next_start_code();
/* If start code is extension start code, parse off extension data. */
if (next_bits(32, EXT_START_CODE)) {
flush_bits(32);
if (vid_stream->picture.ext_data != NULL) {
free(vid_stream->picture.ext_data);
vid_stream->picture.ext_data = NULL;
}
vid_stream->picture.ext_data = get_ext_data();
}
/* If start code is user start code, parse off user data. */
if (next_bits(32, USER_START_CODE)) {
flush_bits(32);
if (vid_stream->picture.user_data != NULL) {
free(vid_stream->picture.user_data);
vid_stream->picture.user_data = NULL;
}
vid_stream->picture.user_data = get_ext_data();
}
/* Find a pict image structure in ring buffer not currently locked. */
i = 0;
while(vid_stream->ring[i]->locked != 0) {
if (++i >= RING_BUF_SIZE) {
perror("Fatal error. Ring buffer full.");
exit(1);
}
}
/* Set current pict image structure to the one just found in ring. */
vid_stream->current = vid_stream->ring[i];
/* Set time stamp. */
vid_stream->current->show_time = time_stamp;
/* Reset past macroblock address field. */
vid_stream->mblock.past_mb_addr = -1;
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParseSlice --
*
* Parses off slice header.
*
* Results:
* Values found in slice header put into video stream structure.
*
* Side effects:
* Bit stream irreversibly parsed.
*
*--------------------------------------------------------------
*/
static int
ParseSlice(vid_stream)
VidStream *vid_stream;
{
unsigned int data;
/* Flush slice start code. */
flush_bits(24);
/* Parse off slice vertical position. */
get_bits8(&data);
vid_stream->slice.vert_pos = data;
/* Parse off quantization scale. */
get_bits5(&data);
vid_stream->slice.quant_scale = data;
/* Parse off extra bit slice info. */
if (vid_stream->slice.extra_info != NULL) {
free(vid_stream->slice.extra_info);
vid_stream->slice.extra_info = NULL;
}
vid_stream->slice.extra_info = get_extra_bit_info();
/* Reset past intrablock address. */
vid_stream->mblock.past_intra_addr = -2;
/* Reset previous recon motion vectors. */
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
vid_stream->mblock.recon_right_back_prev = 0;
vid_stream->mblock.recon_down_back_prev = 0;
/* Reset macroblock address. */
vid_stream->mblock.mb_address = ((vid_stream->slice.vert_pos-1) *
vid_stream->mb_width) - 1;
/* Reset past dct dc y, cr, and cb values. */
vid_stream->block.dct_dc_y_past = 1024;
vid_stream->block.dct_dc_cr_past = 1024;
vid_stream->block.dct_dc_cb_past = 1024;
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParseMacroBlock --
*
* Parseoff macroblock. Reconstructs DCT values. Applies
* inverse DCT, reconstructs motion vectors, calculates and
* set pixel values for macroblock in current pict image
* structure.
*
* Results:
* Here's where everything really happens. Welcome to the
* heart of darkness.
*
* Side effects:
* Bit stream irreversibly parsed off.
*
*--------------------------------------------------------------
*/
static int
ParseMacroBlock(vid_stream)
VidStream *vid_stream;
{
int addr_incr;
unsigned int data;
int i, recon_right_for, recon_down_for, recon_right_back, recon_down_back;
int zero_block_flag;
BOOLEAN mb_quant, mb_motion_forw, mb_motion_back, mb_pattern;
int sparseFlag;
/* Parse off macroblock address increment and add to macroblock
address.
*/
#ifdef ANALYSIS
mbSizeCount = bitCountRead();
#endif
do {
DecodeMBAddrInc(&addr_incr);
if (addr_incr == MB_ESCAPE) {
vid_stream->mblock.mb_address += 33;
addr_incr = MB_STUFFING;
}
} while (addr_incr == MB_STUFFING);
vid_stream->mblock.mb_address += addr_incr;
if (vid_stream->mblock.mb_address > (vid_stream->mb_height *
vid_stream->mb_width - 1))
return SKIP_TO_START_CODE;
/* If macroblocks have been skipped, process skipped macroblocks. */
if (vid_stream->mblock.mb_address-vid_stream->mblock.past_mb_addr > 1) {
if (vid_stream->picture.code_type == P_TYPE)
ProcessSkippedPFrameMBlocks(vid_stream);
else if (vid_stream->picture.code_type == B_TYPE)
ProcessSkippedBFrameMBlocks(vid_stream);
}
/* Set past macroblock address to current macroblock address. */
vid_stream->mblock.past_mb_addr = vid_stream->mblock.mb_address;
/* Based on picture type decode macroblock type. */
switch (vid_stream->picture.code_type) {
case I_TYPE:
DecodeMBTypeI(&mb_quant, &mb_motion_forw, &mb_motion_back, &mb_pattern,
&(vid_stream->mblock.mb_intra));
break;
case P_TYPE:
DecodeMBTypeP(&mb_quant, &mb_motion_forw, &mb_motion_back, &mb_pattern,
&(vid_stream->mblock.mb_intra));
break;
case B_TYPE:
DecodeMBTypeB(&mb_quant, &mb_motion_forw, &mb_motion_back, &mb_pattern,
&(vid_stream->mblock.mb_intra));
break;
}
/* If quantization flag set, parse off new quantization scale. */
if (mb_quant == TRUE) {
get_bits5(&data);
vid_stream->slice.quant_scale = data;
}
/* If forward motion vectors exist... */
if (mb_motion_forw == TRUE) {
/* Parse off and decode horizontal forward motion vector. */
DecodeMotionVectors(&vid_stream->mblock.motion_h_forw_code);
/* If horiz. forward r data exists, parse off. */
if ((vid_stream->picture.forw_f != 1) &&
(vid_stream->mblock.motion_h_forw_code != 0)) {
get_bitsn(vid_stream->picture.forw_r_size, &data);
vid_stream->mblock.motion_h_forw_r = data;
}
/* Parse off and decode vertical forward motion vector. */
DecodeMotionVectors(&vid_stream->mblock.motion_v_forw_code);
/* If vert. forw. r data exists, parse off. */
if ((vid_stream->picture.forw_f != 1) &&
(vid_stream->mblock.motion_v_forw_code != 0)) {
get_bitsn(vid_stream->picture.forw_r_size, &data);
vid_stream->mblock.motion_v_forw_r = data;
}
}
/* If back motion vectors exist... */
if (mb_motion_back == TRUE) {
/* Parse off and decode horiz. back motion vector. */
DecodeMotionVectors(&vid_stream->mblock.motion_h_back_code);
/* If horiz. back r data exists, parse off. */
if ((vid_stream->picture.back_f != 1) &&
(vid_stream->mblock.motion_h_back_code != 0)) {
get_bitsn(vid_stream->picture.back_r_size, &data);
vid_stream->mblock.motion_h_back_r = data;
}
/* Parse off and decode vert. back motion vector. */
DecodeMotionVectors(&vid_stream->mblock.motion_v_back_code);
/* If vert. back r data exists, parse off. */
if ((vid_stream->picture.back_f != 1) &&
(vid_stream->mblock.motion_v_back_code != 0)) {
get_bitsn(vid_stream->picture.back_r_size, &data);
vid_stream->mblock.motion_v_back_r = data;
}
}
#ifdef ANALYSIS
if (vid_stream->mblock.mb_intra) {
stat_a[0].i_mbnum++;
mbCBPPtr = stat_a[0].i_mbcbp;
mbCoeffPtr = stat_a[0].i_mbcoeff;
mbSizePtr = &(stat_a[0].i_mbsize);
}
else if (mb_motion_back && mb_motion_forw) {
stat_a[0].bi_mbnum++;
mbCBPPtr = stat_a[0].bi_mbcbp;
mbCoeffPtr = stat_a[0].bi_mbcoeff;
mbSizePtr = &(stat_a[0].bi_mbsize);
}
else if (mb_motion_back) {
stat_a[0].b_mbnum++;
mbCBPPtr = stat_a[0].b_mbcbp;
mbCoeffPtr = stat_a[0].b_mbcoeff;
mbSizePtr = &(stat_a[0].b_mbsize);
} else {
stat_a[0].p_mbnum++;
mbCBPPtr = stat_a[0].p_mbcbp;
mbCoeffPtr = stat_a[0].p_mbcoeff;
mbSizePtr = &(stat_a[0].p_mbsize);
}
#endif
/* If mblock pattern flag set, parse and decode CBP (code block pattern). */
if (mb_pattern == TRUE) {
DecodeCBP(&vid_stream->mblock.cbp);
}
/* Otherwise, set CBP to zero. */
else vid_stream->mblock.cbp = 0;
#ifdef ANALYSIS
mbCBPPtr[vid_stream->mblock.cbp]++;
#endif
/* Reconstruct motion vectors depending on picture type. */
if (vid_stream->picture.code_type == P_TYPE) {
/* If no forw motion vectors, reset previous and current vectors to 0. */
if (!mb_motion_forw) {
recon_right_for = 0;
recon_down_for = 0;
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
}
/* Otherwise, compute new forw motion vectors. Reset previous vectors
to current vectors.
*/
else {
ComputeForwVector(&recon_right_for, &recon_down_for);
}
}
if (vid_stream->picture.code_type == B_TYPE) {
/* Reset prev. and current vectors to zero if mblock is intracoded. */
if (vid_stream->mblock.mb_intra) {
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
vid_stream->mblock.recon_right_back_prev = 0;
vid_stream->mblock.recon_down_back_prev = 0;
}
else {
/* If no forw vectors, current vectors equal prev. vectors. */
if (!mb_motion_forw) {
recon_right_for = vid_stream->mblock.recon_right_for_prev;
recon_down_for = vid_stream->mblock.recon_down_for_prev;
}
/* Otherwise compute forw. vectors. Reset prev vectors to new values. */
else {
ComputeForwVector(&recon_right_for, &recon_down_for);
}
/* If no back vectors, set back vectors to prev back vectors. */
if (!mb_motion_back) {
recon_right_back = vid_stream->mblock.recon_right_back_prev;
recon_down_back = vid_stream->mblock.recon_down_back_prev;
}
/* Otherwise compute new vectors and reset prev. back vectors. */
else {
ComputeBackVector(&recon_right_back, &recon_down_back);
}
/* Store vector existance flags in structure for possible
skipped macroblocks to follow.
*/
vid_stream->mblock.bpict_past_forw = mb_motion_forw;
vid_stream->mblock.bpict_past_back = mb_motion_back;
}
}
/* For each possible block in macroblock. */
for (i=0; i<6; i++) {
/* If block exists... */
if ((vid_stream->mblock.mb_intra) ||
(vid_stream->mblock.cbp & (1<<(5-i)))) {
/* Unset Zero Block Flag. */
zero_block_flag = 0;
if (ditherType == GRAY_DITHER || ditherType == MONO_DITHER || ditherType == MONO_THRESHOLD) {
if (i < 5) {
/* Reconstruct DCT coeffs in block. */
sparseFlag = ParseReconBlock(i);
/* Run through inverse DCT. */
}
else {
/* Parse and throw away block. */
ParseAwayBlock(i);
}
}
else {
/* Parse and reconstruct block. */
sparseFlag = ParseReconBlock(i);
}
}
/* Otherwise, set zero block flag. */
else {
zero_block_flag = 1;
}
if (ditherType == GRAY_DITHER || ditherType == MONO_DITHER || ditherType == MONO_THRESHOLD) {
if (i < 5) {
/* If macroblock is intra coded... */
if (vid_stream->mblock.mb_intra) {
ReconIMBlock(vid_stream, i);
}
else if (mb_motion_forw && mb_motion_back) {
ReconBiMBlock(vid_stream, i, recon_right_for, recon_down_for, recon_right_back,
recon_down_back, zero_block_flag);
}
else if (mb_motion_forw || (vid_stream->picture.code_type == P_TYPE)) {
ReconPMBlock(vid_stream, i, recon_right_for, recon_down_for, zero_block_flag);
}
else if (mb_motion_back) {
ReconBMBlock(vid_stream, i, recon_right_back, recon_down_back, zero_block_flag);
}
}
}
else {
/* If macroblock is intra coded... */
if (vid_stream->mblock.mb_intra) {
ReconIMBlock(vid_stream, i);
}
else if (mb_motion_forw && mb_motion_back) {
ReconBiMBlock(vid_stream, i, recon_right_for, recon_down_for, recon_right_back,
recon_down_back, zero_block_flag);
}
else if (mb_motion_forw || (vid_stream->picture.code_type == P_TYPE)) {
ReconPMBlock(vid_stream, i, recon_right_for, recon_down_for, zero_block_flag);
}
else if (mb_motion_back) {
ReconBMBlock(vid_stream, i, recon_right_back, recon_down_back, zero_block_flag);
}
}
}
/* If D Type picture, flush marker bit. */
if (vid_stream->picture.code_type == 4) flush_bits(1);
/* If macroblock was intracoded, set macroblock past intra address. */
if (vid_stream->mblock.mb_intra) vid_stream->mblock.past_intra_addr =
vid_stream->mblock.mb_address;
#ifdef ANALYSIS
*mbSizePtr += bitCountRead() - mbSizeCount;
#endif
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ReconIMBlock --
*
* Reconstructs intra coded macroblock.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconIMBlock(vid_stream, bnum)
VidStream *vid_stream;
int bnum;
{
int mb_row, mb_col, row, col, row_size, rr, cc;
unsigned char *dest;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
/* If block is luminance block... */
if (bnum<4) {
/* Calculate row and col values for upper left pixel of block. */
row = mb_row * 16; col = mb_col * 16;
if (bnum>1) row += 8;
if (bnum%2) col += 8;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
/* Establish row size. */
row_size = vid_stream->mb_width*16;
}
/* Otherwise if block is Cr block... */
else if (bnum==4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
/* Establish row size. */
row_size = vid_stream->mb_width*8;
/* Calculate row,col for upper left pixel of block. */
row = mb_row*8;
col = mb_col*8;
}
/* Otherwise block is Cb block, and ... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
/* Establish row size. */
row_size = vid_stream->mb_width*8;
/* Calculate row,col for upper left pixel value of block. */
row = mb_row*8; col = mb_col*8;
}
/* For each pixel in block, set to cropped reconstructed value
from inverse dct.
*/
{
short *sp = &vid_stream->block.dct_recon[0][0];
unsigned char *cm = cropTbl + MAX_NEG_CROP;
dest += row * row_size + col;
for(rr = 0; rr < 8; rr++, sp += 8, dest += row_size) {
dest[0] = cm[sp[0]]; assertCrop(sp[0]);
dest[1] = cm[sp[1]]; assertCrop(sp[1]);
dest[2] = cm[sp[2]]; assertCrop(sp[2]);
dest[3] = cm[sp[3]]; assertCrop(sp[3]);
dest[4] = cm[sp[4]]; assertCrop(sp[4]);
dest[5] = cm[sp[5]]; assertCrop(sp[5]);
dest[6] = cm[sp[6]]; assertCrop(sp[6]);
dest[7] = cm[sp[7]]; assertCrop(sp[7]);
}
}
}
/*
*--------------------------------------------------------------
*
* ReconPMBlock --
*
* Reconstructs forward predicted macroblocks.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconPMBlock(vid_stream, bnum, recon_right_for, recon_down_for, zflag)
VidStream * vid_stream;
int bnum, recon_right_for, recon_down_for, zflag;
{
int mb_row, mb_col, row, col, row_size, rr, cc;
unsigned char *dest, *past;
int right_for, down_for, right_half_for, down_half_for;
unsigned char *rindex1, *rindex2;
unsigned char *index;
int val;
short int *blockvals;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
if (bnum<4) {
/* Calculate right_for, down_for motion vectors. */
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
if (vid_stream->picture.code_type == B_TYPE) {
if (vid_stream->past != NULL)
past = vid_stream->past->luminance;
}
else {
/* Set predicitive frame to current future frame. */
if (vid_stream->future != NULL)
past = vid_stream->future->luminance;
}
/* Establish row size. */
row_size = vid_stream->mb_width << 4;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 4; col = mb_col << 4;
if (bnum>1) row += 8;
if (bnum%2) col += 8;
}
/* Otherwise, block is NOT luminance block, ... */
else {
/* Construct motion vectors. */
right_for = recon_right_for >> 2;
down_for = recon_down_for >> 2;
right_half_for = recon_right_for & 0x2;
down_half_for = recon_down_for & 0x2;
/* Establish row size. */
row_size = vid_stream->mb_width << 3;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 3; col = mb_col << 3;
/* If block is Cr block... */
if (bnum== 4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
if (vid_stream->picture.code_type == B_TYPE) {
if (vid_stream->past != NULL)
past = vid_stream->past->Cr;
}
else {
if (vid_stream->future != NULL)
past = vid_stream->future->Cr;
}
}
/* Otherwise, block is Cb block... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
if (vid_stream->picture.code_type == B_TYPE) {
if (vid_stream->past != NULL)
past = vid_stream->past->Cb;
}
else {
if (vid_stream->future != NULL)
past = vid_stream->future->Cb;
}
}
}
/* For each pixel in block... */
index = dest+(row*row_size)+col;
rindex1 = past+(row+down_for)*row_size+col+right_for;
blockvals = &(vid_stream->block.dct_recon[0][0]);
/*
* Calculate predictive pixel value based on motion vectors
* and copy to dest plane.
*/
if ((!down_half_for) && (!right_half_for)) {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
if (!zflag)
for (rr = 0; rr < 8; rr++) {
index[0] = cm[(int)rindex1[0] + (int)blockvals[0]];
index[1] = cm[(int)rindex1[1] + (int)blockvals[1]];
index[2] = cm[(int)rindex1[2] + (int)blockvals[2]];
index[3] = cm[(int)rindex1[3] + (int)blockvals[3]];
index[4] = cm[(int)rindex1[4] + (int)blockvals[4]];
index[5] = cm[(int)rindex1[5] + (int)blockvals[5]];
index[6] = cm[(int)rindex1[6] + (int)blockvals[6]];
index[7] = cm[(int)rindex1[7] + (int)blockvals[7]];
blockvals += 8;
index += row_size;
rindex1 += row_size;
}
else
for (rr = 0; rr < 8; rr++) {
index[0] = rindex1[0];
index[1] = rindex1[1];
index[2] = rindex1[2];
index[3] = rindex1[3];
index[4] = rindex1[4];
index[5] = rindex1[5];
index[6] = rindex1[6];
index[7] = rindex1[7];
index += row_size;
rindex1 += row_size;
}
}
else {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
rindex2 = rindex1 + right_half_for + (down_half_for * row_size);
if (!zflag)
for (rr = 0; rr < 8; rr++) {
index[0] = cm[((int)(rindex1[0] + rindex2[0])>>1) + blockvals[0]];
index[1] = cm[((int)(rindex1[1] + rindex2[1])>>1) + blockvals[1]];
index[2] = cm[((int)(rindex1[2] + rindex2[2])>>1) + blockvals[2]];
index[3] = cm[((int)(rindex1[3] + rindex2[3])>>1) + blockvals[3]];
index[4] = cm[((int)(rindex1[4] + rindex2[4])>>1) + blockvals[4]];
index[5] = cm[((int)(rindex1[5] + rindex2[5])>>1) + blockvals[5]];
index[6] = cm[((int)(rindex1[6] + rindex2[6])>>1) + blockvals[6]];
index[7] = cm[((int)(rindex1[7] + rindex2[7])>>1) + blockvals[7]];
blockvals += 8;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
else
for (rr = 0; rr < 8; rr++) {
index[0] = (int)(rindex1[0] + rindex2[0]) >> 1;
index[1] = (int)(rindex1[1] + rindex2[1]) >> 1;
index[2] = (int)(rindex1[2] + rindex2[2]) >> 1;
index[3] = (int)(rindex1[3] + rindex2[3]) >> 1;
index[4] = (int)(rindex1[4] + rindex2[4]) >> 1;
index[5] = (int)(rindex1[5] + rindex2[5]) >> 1;
index[6] = (int)(rindex1[6] + rindex2[6]) >> 1;
index[7] = (int)(rindex1[7] + rindex2[7]) >> 1;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
}
}
/*
*--------------------------------------------------------------
*
* ReconBMBlock --
*
* Reconstructs back predicted macroblocks.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconBMBlock(vid_stream, bnum, recon_right_back, recon_down_back, zflag)
VidStream *vid_stream;
int bnum, recon_right_back, recon_down_back, zflag;
{
int mb_row, mb_col, row, col, row_size, rr, cc;
unsigned char *dest, *future;
int right_back, down_back, right_half_back, down_half_back;
unsigned char *rindex1, *rindex2;
unsigned char *index;
int val;
short int *blockvals;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
/* If block is luminance block... */
if (bnum<4) {
/* Calculate right_back, down_bakc motion vectors. */
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
/* If future frame exists, set future to luminance plane
of future frame.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->luminance;
/* Establish row size. */
row_size = vid_stream->mb_width << 4;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 4; col = mb_col << 4;
if (bnum>1) row += 8;
if (bnum%2) col += 8;
}
/* Otherwise, block is NOT luminance block, ... */
else {
/* Construct motion vectors. */
right_back = recon_right_back >> 2;
down_back = recon_down_back >> 2;
right_half_back = recon_right_back & 0x2;
down_half_back = recon_down_back & 0x2;
/* Establish row size. */
row_size = vid_stream->mb_width << 3;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 3; col = mb_col << 3;
/* If block is Cr block... */
if (bnum== 4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
/* If future frame exists, set future to Cr plane of future image. */
if (vid_stream->future != NULL)
future = vid_stream->future->Cr;
}
/* Otherwise, block is Cb block... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
/* If future frame exists, set future to Cb plane of future frame. */
if (vid_stream->future != NULL)
future = vid_stream->future->Cb;
}
}
/* For each pixel in block do... */
index = dest + (row*row_size)+col;
rindex1 = future + (row+down_back)*row_size+col+right_back;
blockvals = &(vid_stream->block.dct_recon[0][0]);
if ((!right_half_back)&&(!down_half_back)) {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
if (!zflag)
for (rr = 0; rr < 8; rr++) {
index[0] = cm[(int)rindex1[0] + (int)blockvals[0]];
index[1] = cm[(int)rindex1[1] + (int)blockvals[1]];
index[2] = cm[(int)rindex1[2] + (int)blockvals[2]];
index[3] = cm[(int)rindex1[3] + (int)blockvals[3]];
index[4] = cm[(int)rindex1[4] + (int)blockvals[4]];
index[5] = cm[(int)rindex1[5] + (int)blockvals[5]];
index[6] = cm[(int)rindex1[6] + (int)blockvals[6]];
index[7] = cm[(int)rindex1[7] + (int)blockvals[7]];
blockvals += 8;
index += row_size;
rindex1 += row_size;
}
else
for (rr = 0; rr < 8; rr++) {
index[0] = rindex1[0];
index[1] = rindex1[1];
index[2] = rindex1[2];
index[3] = rindex1[3];
index[4] = rindex1[4];
index[5] = rindex1[5];
index[6] = rindex1[6];
index[7] = rindex1[7];
index += row_size;
rindex1 += row_size;
}
}
else {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
rindex2 = rindex1 + right_half_back + (down_half_back*row_size);
if (!zflag)
for (rr = 0; rr < 8; rr++) {
index[0] = cm[((int)(rindex1[0] + rindex2[0])>>1) + blockvals[0]];
index[1] = cm[((int)(rindex1[1] + rindex2[1])>>1) + blockvals[1]];
index[2] = cm[((int)(rindex1[2] + rindex2[2])>>1) + blockvals[2]];
index[3] = cm[((int)(rindex1[3] + rindex2[3])>>1) + blockvals[3]];
index[4] = cm[((int)(rindex1[4] + rindex2[4])>>1) + blockvals[4]];
index[5] = cm[((int)(rindex1[5] + rindex2[5])>>1) + blockvals[5]];
index[6] = cm[((int)(rindex1[6] + rindex2[6])>>1) + blockvals[6]];
index[7] = cm[((int)(rindex1[7] + rindex2[7])>>1) + blockvals[7]];
blockvals += 8;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
else
for (rr = 0; rr < 8; rr++) {
index[0] = (int)(rindex1[0] + rindex2[0]) >> 1;
index[1] = (int)(rindex1[1] + rindex2[1]) >> 1;
index[2] = (int)(rindex1[2] + rindex2[2]) >> 1;
index[3] = (int)(rindex1[3] + rindex2[3]) >> 1;
index[4] = (int)(rindex1[4] + rindex2[4]) >> 1;
index[5] = (int)(rindex1[5] + rindex2[5]) >> 1;
index[6] = (int)(rindex1[6] + rindex2[6]) >> 1;
index[7] = (int)(rindex1[7] + rindex2[7]) >> 1;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
}
}
/*
*--------------------------------------------------------------
*
* ReconBiMBlock --
*
* Reconstructs bidirectionally predicted macroblocks.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconBiMBlock(vid_stream, bnum, recon_right_for, recon_down_for,
recon_right_back, recon_down_back, zflag)
VidStream *vid_stream;
int bnum, recon_right_for, recon_down_for, recon_right_back, recon_down_back;
int zflag;
{
int mb_row, mb_col, row, col, row_size, rr, cc;
unsigned char *dest, *past, *future;
int right_for, down_for, right_half_for, down_half_for;
int right_back, down_back, right_half_back, down_half_back;
unsigned char *index, *rindex1, *bindex1, *rindex2, *bindex2;
short int *blockvals;
int val;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
/* If block is luminance block... */
if (bnum<4) {
/* Calculate right_for, down_for, right_half_for, down_half_for,
right_back, down_bakc, right_half_back, and down_half_back,
motion vectors.
*/
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
/* If past frame exists, set past to luminance plane of past frame. */
if (vid_stream->past != NULL)
past = vid_stream->past->luminance;
/* If future frame exists, set future to luminance plane
of future frame.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->luminance;
/* Establish row size. */
row_size = (vid_stream->mb_width << 4);
/* Calculate row,col of upper left pixel in block. */
row = (mb_row << 4); col = (mb_col << 4);
if (bnum>1) row += 8;
if (bnum & 0x01) col += 8;
}
/* Otherwise, block is NOT luminance block, ... */
else {
/* Construct motion vectors. */
right_for = recon_right_for >> 2;
down_for = recon_down_for >> 2;
right_half_for = recon_right_for & 0x2;
down_half_for = recon_down_for & 0x2;
right_back = recon_right_back >> 2;
down_back = recon_down_back >> 2;
right_half_back = recon_right_back & 0x2;
down_half_back = recon_down_back & 0x2;
/* Establish row size. */
row_size = (vid_stream->mb_width << 3);
/* Calculate row,col of upper left pixel in block. */
row = (mb_row << 3); col = (mb_col << 3);
/* If block is Cr block... */
if (bnum== 4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
/* If past frame exists, set past to Cr plane of past image. */
if (vid_stream->past != NULL)
past = vid_stream->past->Cr;
/* If future frame exists, set future to Cr plane of future image. */
if (vid_stream->future != NULL)
future = vid_stream->future->Cr;
}
/* Otherwise, block is Cb block... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
/* If past frame exists, set past to Cb plane of past frame. */
if (vid_stream->past != NULL)
past = vid_stream->past->Cb;
/* If future frame exists, set future to Cb plane of future frame. */
if (vid_stream->future != NULL)
future = vid_stream->future->Cb;
}
}
/* For each pixel in block... */
index = dest+(row*row_size)+col;
rindex1 = past+(row+down_for)*row_size+col+right_for;
bindex1 = future+(row+down_back)*row_size+col+right_back;
blockvals = (short int *) &( vid_stream->block.dct_recon[0][0]);
if ((!down_half_for) && (!right_half_for) &&
(!down_half_back) && (!right_half_back)) {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
if (!zflag)
for (rr = 0; rr < 8; rr++) {
index[0] = cm[((int)(rindex1[0] + bindex1[0])>>1) + blockvals[0]];
index[1] = cm[((int)(rindex1[1] + bindex1[1])>>1) + blockvals[1]];
index[2] = cm[((int)(rindex1[2] + bindex1[2])>>1) + blockvals[2]];
index[3] = cm[((int)(rindex1[3] + bindex1[3])>>1) + blockvals[3]];
index[4] = cm[((int)(rindex1[4] + bindex1[4])>>1) + blockvals[4]];
index[5] = cm[((int)(rindex1[5] + bindex1[5])>>1) + blockvals[5]];
index[6] = cm[((int)(rindex1[6] + bindex1[6])>>1) + blockvals[6]];
index[7] = cm[((int)(rindex1[7] + bindex1[7])>>1) + blockvals[7]];
blockvals += 8;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
}
else
for (rr = 0; rr < 8; rr++) {
index[0] = (int)(rindex1[0] + bindex1[0]) >> 1;
index[1] = (int)(rindex1[1] + bindex1[1]) >> 1;
index[2] = (int)(rindex1[2] + bindex1[2]) >> 1;
index[3] = (int)(rindex1[3] + bindex1[3]) >> 1;
index[4] = (int)(rindex1[4] + bindex1[4]) >> 1;
index[5] = (int)(rindex1[5] + bindex1[5]) >> 1;
index[6] = (int)(rindex1[6] + bindex1[6]) >> 1;
index[7] = (int)(rindex1[7] + bindex1[7]) >> 1;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
}
}
else {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
rindex2 = rindex1 + right_half_for + (row_size * down_half_for);
bindex2 = bindex1 + right_half_back + (row_size * down_half_back);
if (!zflag)
for (rr = 0; rr < 8; rr++) {
index[0] = cm[((int)(rindex1[0] + bindex1[0] +
rindex2[0] + bindex2[0]) >> 2) + blockvals[0]];
index[1] = cm[((int)(rindex1[1] + bindex1[1] +
rindex2[1] + bindex2[1]) >> 2) + blockvals[1]];
index[2] = cm[((int)(rindex1[2] + bindex1[2] +
rindex2[2] + bindex2[2]) >> 2) + blockvals[2]];
index[3] = cm[((int)(rindex1[3] + bindex1[3] +
rindex2[3] + bindex2[3]) >> 2) + blockvals[3]];
index[4] = cm[((int)(rindex1[4] + bindex1[4] +
rindex2[4] + bindex2[4]) >> 2) + blockvals[4]];
index[5] = cm[((int)(rindex1[5] + bindex1[5] +
rindex2[5] + bindex2[5]) >> 2) + blockvals[5]];
index[6] = cm[((int)(rindex1[6] + bindex1[6] +
rindex2[6] + bindex2[6]) >> 2) + blockvals[6]];
index[7] = cm[((int)(rindex1[7] + bindex1[7] +
rindex2[7] + bindex2[7]) >> 2) + blockvals[7]];
blockvals += 8;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
rindex2 += row_size;
bindex2 += row_size;
}
else
for (rr = 0; rr < 8; rr++) {
index[0] = (int)(rindex1[0] + bindex1[0] + rindex2[0] + bindex2[0]) >>2;
index[1] = (int)(rindex1[1] + bindex1[1] + rindex2[1] + bindex2[1]) >>2;
index[2] = (int)(rindex1[2] + bindex1[2] + rindex2[2] + bindex2[2]) >>2;
index[3] = (int)(rindex1[3] + bindex1[3] + rindex2[3] + bindex2[3]) >>2;
index[4] = (int)(rindex1[4] + bindex1[4] + rindex2[4] + bindex2[4]) >>2;
index[5] = (int)(rindex1[5] + bindex1[5] + rindex2[5] + bindex2[5]) >>2;
index[6] = (int)(rindex1[6] + bindex1[6] + rindex2[6] + bindex2[6]) >>2;
index[7] = (int)(rindex1[7] + bindex1[7] + rindex2[7] + bindex2[7]) >>2;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
rindex2 += row_size;
bindex2 += row_size;
}
}
}
/*
*--------------------------------------------------------------
*
* ProcessSkippedPFrameMBlocks --
*
* Processes skipped macroblocks in P frames.
*
* Results:
* Calculates pixel values for luminance, Cr, and Cb planes
* in current pict image for skipped macroblocks.
*
* Side effects:
* Pixel values in pict image changed.
*
*--------------------------------------------------------------
*/
static int
ProcessSkippedPFrameMBlocks(vid_stream)
VidStream *vid_stream;
{
int row_size, half_row, mb_row, mb_col, row, col, rr;
int addr;
unsigned char *dest, *src, *dest1, *src1;
/* Calculate row sizes for luminance and Cr/Cb macroblock areas. */
row_size = vid_stream->mb_width << 4;
half_row = (row_size >> 1);
/* For each skipped macroblock, do... */
for(addr = vid_stream->mblock.past_mb_addr+1;
addr < vid_stream->mblock.mb_address; addr++) {
/* Calculate macroblock row and col. */
mb_row = addr / vid_stream->mb_width;
mb_col = addr % vid_stream->mb_width;
/* Calculate upper left pixel row,col for luminance plane. */
row = mb_row << 4;
col = mb_col << 4;
/* For each row in macroblock luminance plane... */
dest = vid_stream->current->luminance+(row*row_size)+col;
src = vid_stream->future->luminance+(row*row_size)+col;
for (rr = 0; rr < 16; rr++) {
/* Copy pixel values from last I or P picture. */
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest[4] = src[4];
dest[5] = src[5];
dest[6] = src[6];
dest[7] = src[7];
dest[8] = src[8];
dest[9] = src[9];
dest[10] = src[10];
dest[11] = src[11];
dest[12] = src[12];
dest[13] = src[13];
dest[14] = src[14];
dest[15] = src[15];
dest += row_size;
src += row_size;
}
/* Divide row,col to get upper left pixel of macroblock in Cr
and Cb planes.
*/
row = row >> 1; col = col >> 1;
/* For each row in Cr, and Cb planes... */
dest = vid_stream->current->Cr+(row*half_row)+col;
src = vid_stream->future->Cr+(row*half_row)+col;
dest1 = vid_stream->current->Cb+(row*half_row)+col;
src1 = vid_stream->future->Cb+(row*half_row)+col;
for (rr = 0; rr < 8; rr++) {
/* Copy pixel values from last I or P picture. */
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest[4] = src[4];
dest[5] = src[5];
dest[6] = src[6];
dest[7] = src[7];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest1[2] = src1[2];
dest1[3] = src1[3];
dest1[4] = src1[4];
dest1[5] = src1[5];
dest1[6] = src1[6];
dest1[7] = src1[7];
dest += half_row; src += half_row;
dest1 += half_row; src1 += half_row;
}
}
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ProcessSkippedBFrameMBlocks --
*
* Processes skipped macroblocks in B frames.
*
* Results:
* Calculates pixel values for luminance, Cr, and Cb planes
* in current pict image for skipped macroblocks.
*
* Side effects:
* Pixel values in pict image changed.
*
*--------------------------------------------------------------
*/
static int
ProcessSkippedBFrameMBlocks(vid_stream)
VidStream *vid_stream;
{
int row_size, half_row, mb_row, mb_col, row, col, rr, cc;
int right_half_for, down_half_for, c_right_half_for, c_down_half_for;
int right_half_back, down_half_back, c_right_half_back, c_down_half_back;
int addr, right_for, down_for;
int recon_right_for, recon_down_for;
int recon_right_back, recon_down_back;
int right_back, down_back;
int c_right_for, c_down_for;
int c_right_back, c_down_back;
unsigned char forw_lum[256];
unsigned char forw_cr[64], forw_cb[64];
unsigned char back_lum[256], back_cr[64], back_cb[64];
unsigned char *src, *src1, *src2, *src1a, *src2a;
unsigned char *dest, *dest1;
/* Calculate row sizes for luminance and Cr/Cb macroblock areas. */
row_size = vid_stream->mb_width << 4;
half_row = (row_size >> 1);
/* Establish motion vector codes based on full pixel flag. */
if (vid_stream->picture.full_pel_forw_vector) {
recon_right_for = vid_stream->mblock.recon_right_for_prev << 1;
recon_down_for = vid_stream->mblock.recon_down_for_prev << 1;
}
else {
recon_right_for = vid_stream->mblock.recon_right_for_prev;
recon_down_for = vid_stream->mblock.recon_down_for_prev;
}
if (vid_stream->picture.full_pel_back_vector) {
recon_right_back = vid_stream->mblock.recon_right_back_prev << 1;
recon_down_back = vid_stream->mblock.recon_down_back_prev << 1;
}
else {
recon_right_back = vid_stream->mblock.recon_right_back_prev;
recon_down_back = vid_stream->mblock.recon_down_back_prev;
}
/* Calculate motion vectors. */
if (vid_stream->mblock.bpict_past_forw) {
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
c_right_for = recon_right_for >> 2;
c_down_for = recon_down_for >> 2;
c_right_half_for = recon_right_for & 0x2;
c_down_half_for = recon_down_for & 0x2;
}
if (vid_stream->mblock.bpict_past_back) {
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
c_right_back = recon_right_back >> 2;
c_down_back = recon_down_back >> 2;
c_right_half_back = recon_right_back & 0x2;
c_down_half_back = recon_down_back & 0x2;
}
/* For each skipped macroblock, do... */
for(addr = vid_stream->mblock.past_mb_addr+1;
addr < vid_stream->mblock.mb_address; addr++) {
/* Calculate macroblock row and col. */
mb_row = addr / vid_stream->mb_width;
mb_col = addr % vid_stream->mb_width;
/* Calculate upper left pixel row,col for luminance plane. */
row = mb_row << 4;
col = mb_col << 4;
/* If forward predicted, calculate prediction values. */
if (vid_stream->mblock.bpict_past_forw) {
ReconSkippedBlock(vid_stream->past->luminance, forw_lum,
row, col, row_size, right_for, down_for,
right_half_for, down_half_for, 16);
ReconSkippedBlock(vid_stream->past->Cr, forw_cr, (row>>1),
(col>>1), (row_size>>1),
c_right_for, c_down_for, c_right_half_for, c_down_half_for, 8);
ReconSkippedBlock(vid_stream->past->Cb, forw_cb, (row>>1),
(col>>1), (row_size>>1),
c_right_for, c_down_for, c_right_half_for, c_down_half_for, 8);
}
/* If back predicted, calculate prediction values. */
if (vid_stream->mblock.bpict_past_back) {
ReconSkippedBlock(vid_stream->future->luminance, back_lum,
row, col, row_size, right_back, down_back,
right_half_back, down_half_back, 16);
ReconSkippedBlock(vid_stream->future->Cr, back_cr, (row>>1),
(col>>1), (row_size>>1),
c_right_back, c_down_back,
c_right_half_back, c_down_half_back, 8);
ReconSkippedBlock(vid_stream->future->Cb, back_cb, (row>>1),
(col>>1), (row_size>>1),
c_right_back, c_down_back,
c_right_half_back, c_down_half_back, 8);
}
if (vid_stream->mblock.bpict_past_forw &&
(!vid_stream->mblock.bpict_past_back)) {
dest = vid_stream->current->luminance+(row*row_size)+col;
src = forw_lum;
for (rr = 0; rr < 16; rr++) {
/* memcpy(dest, forw_lum+(rr<<4), 16); */
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest[4] = src[4];
dest[5] = src[5];
dest[6] = src[6];
dest[7] = src[7];
dest[8] = src[8];
dest[9] = src[9];
dest[10] = src[10];
dest[11] = src[11];
dest[12] = src[12];
dest[13] = src[13];
dest[14] = src[14];
dest[15] = src[15];
dest += row_size;
src += 16;
}
row /= 2; col /= 2;
dest = vid_stream->current->Cr+(row*half_row)+col;
dest1 = vid_stream->current->Cb+(row*half_row)+col;
src = forw_cr;
src1 = forw_cb;
for (rr = 0; rr < 8; rr++) {
/*
* memcpy(dest, forw_cr+(rr<<3), 8);
* memcpy(dest1, forw_cb+(rr<<3), 8);
*/
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest[4] = src[4];
dest[5] = src[5];
dest[6] = src[6];
dest[7] = src[7];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest1[2] = src1[2];
dest1[3] = src1[3];
dest1[4] = src1[4];
dest1[5] = src1[5];
dest1[6] = src1[6];
dest1[7] = src1[7];
dest += half_row;
dest1 += half_row;
src += 8;
src1 += 8;
}
}
else if (vid_stream->mblock.bpict_past_back &&
(!vid_stream->mblock.bpict_past_forw)) {
dest = vid_stream->current->luminance+(row*row_size)+col;
for (rr = 0; rr < 16; rr++) {
memcpy(dest, back_lum+(rr<<4), 16);
dest += row_size;
}
row /= 2; col /= 2;
dest = vid_stream->current->Cr+(row*half_row)+col;
dest1 = vid_stream->current->Cb+(row*half_row)+col;
src = back_cr;
src1 = back_cb;
for (rr = 0; rr < 8; rr++) {
/*
* memcpy(dest, back_cr+(rr<<3), 8);
* memcpy(dest1, back_cb+(rr<<3), 8);
*/
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest[4] = src[4];
dest[5] = src[5];
dest[6] = src[6];
dest[7] = src[7];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest1[2] = src1[2];
dest1[3] = src1[3];
dest1[4] = src1[4];
dest1[5] = src1[5];
dest1[6] = src1[6];
dest1[7] = src1[7];
dest += half_row;
dest1 += half_row;
src += 8;
src1 += 8;
}
}
else {
dest = vid_stream->current->luminance+(row*row_size)+col;
src1 = forw_lum; src2 = back_lum;
for (rr = 0; rr < 16; rr++) {
dest[0] = (int)(src1[0] + src2[0]) >> 1;
dest[1] = (int)(src1[1] + src2[1]) >> 1;
dest[2] = (int)(src1[2] + src2[2]) >> 1;
dest[3] = (int)(src1[3] + src2[3]) >> 1;
dest[4] = (int)(src1[4] + src2[4]) >> 1;
dest[5] = (int)(src1[5] + src2[5]) >> 1;
dest[6] = (int)(src1[6] + src2[6]) >> 1;
dest[7] = (int)(src1[7] + src2[7]) >> 1;
dest[8] = (int)(src1[8] + src2[8]) >> 1;
dest[9] = (int)(src1[9] + src2[9]) >> 1;
dest[10] = (int)(src1[10] + src2[10]) >> 1;
dest[11] = (int)(src1[11] + src2[11]) >> 1;
dest[12] = (int)(src1[12] + src2[12]) >> 1;
dest[13] = (int)(src1[13] + src2[13]) >> 1;
dest[14] = (int)(src1[14] + src2[14]) >> 1;
dest[15] = (int)(src1[15] + src2[15]) >> 1;
dest += row_size;
src1 += 16;
src2 += 16;
}
row /= 2; col /= 2;
dest = vid_stream->current->Cr+(row*half_row)+col;
dest1 = vid_stream->current->Cb+(row*half_row)+col;
src1 = forw_cr; src2 = back_cr;
src1a = forw_cb; src2a = back_cb;
for (rr = 0; rr < 8; rr++) {
dest[0] = (int)(src1[0] + src2[0]) >> 1;
dest[1] = (int)(src1[1] + src2[1]) >> 1;
dest[2] = (int)(src1[2] + src2[2]) >> 1;
dest[3] = (int)(src1[3] + src2[3]) >> 1;
dest[4] = (int)(src1[4] + src2[4]) >> 1;
dest[5] = (int)(src1[5] + src2[5]) >> 1;
dest[6] = (int)(src1[6] + src2[6]) >> 1;
dest[7] = (int)(src1[7] + src2[7]) >> 1;
dest += half_row;
src1 += 8;
src2 += 8;
dest1[0] = (int)(src1a[0] + src2a[0]) >> 1;
dest1[1] = (int)(src1a[1] + src2a[1]) >> 1;
dest1[2] = (int)(src1a[2] + src2a[2]) >> 1;
dest1[3] = (int)(src1a[3] + src2a[3]) >> 1;
dest1[4] = (int)(src1a[4] + src2a[4]) >> 1;
dest1[5] = (int)(src1a[5] + src2a[5]) >> 1;
dest1[6] = (int)(src1a[6] + src2a[6]) >> 1;
dest1[7] = (int)(src1a[7] + src2a[7]) >> 1;
dest1 += half_row;
src1a += 8;
src2a += 8;
}
}
}
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ReconSkippedBlock --
*
* Reconstructs predictive block for skipped macroblocks
* in B Frames.
*
* Results:
* No return values.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconSkippedBlock(source, dest, row, col, row_size,
right, down, right_half, down_half, width)
unsigned char *source;
unsigned char *dest;
int row, col, row_size, right, down, right_half, down_half, width;
{
int rr, cc;
unsigned char *source2;
source += ((row+down)*row_size)+col+right;
if (width == 16) {
if ((!right_half) && (!down_half)) {
for (rr =0 ; rr < width; rr++) {
dest[0] = source[0];
dest[1] = source[1];
dest[2] = source[2];
dest[3] = source[3];
dest[4] = source[4];
dest[5] = source[5];
dest[6] = source[6];
dest[7] = source[7];
dest[8] = source[8];
dest[9] = source[9];
dest[10] = source[10];
dest[11] = source[11];
dest[12] = source[12];
dest[13] = source[13];
dest[14] = source[14];
dest[15] = source[15];
dest += width;
source += row_size;
}
}
else {
source2 = source + right_half + (row_size * down_half);
for (rr =0 ; rr < width; rr++) {
dest[0] = (int)(source[0] + source2[0]) >> 1;
dest[1] = (int)(source[1] + source2[1]) >> 1;
dest[2] = (int)(source[2] + source2[2]) >> 1;
dest[3] = (int)(source[3] + source2[3]) >> 1;
dest[4] = (int)(source[4] + source2[4]) >> 1;
dest[5] = (int)(source[5] + source2[5]) >> 1;
dest[6] = (int)(source[6] + source2[6]) >> 1;
dest[7] = (int)(source[7] + source2[7]) >> 1;
dest[8] = (int)(source[8] + source2[8]) >> 1;
dest[9] = (int)(source[9] + source2[9]) >> 1;
dest[10] = (int)(source[10] + source2[10]) >> 1;
dest[11] = (int)(source[11] + source2[11]) >> 1;
dest[12] = (int)(source[12] + source2[12]) >> 1;
dest[13] = (int)(source[13] + source2[13]) >> 1;
dest[14] = (int)(source[14] + source2[14]) >> 1;
dest[15] = (int)(source[15] + source2[15]) >> 1;
dest += width;
source += row_size;
source2 += row_size;
}
}
} else /* (width == 8) */ {
assert (width == 8);
if ((!right_half) && (!down_half)) {
for (rr =0 ; rr < width; rr++) {
dest[0] = source[0];
dest[1] = source[1];
dest[2] = source[2];
dest[3] = source[3];
dest[4] = source[4];
dest[5] = source[5];
dest[6] = source[6];
dest[7] = source[7];
dest += width;
source += row_size;
}
}
else {
source2 = source + right_half + (row_size * down_half);
for (rr =0 ; rr < width; rr++) {
dest[0] = (int)(source[0] + source2[0]) >> 1;
dest[1] = (int)(source[1] + source2[1]) >> 1;
dest[2] = (int)(source[2] + source2[2]) >> 1;
dest[3] = (int)(source[3] + source2[3]) >> 1;
dest[4] = (int)(source[4] + source2[4]) >> 1;
dest[5] = (int)(source[5] + source2[5]) >> 1;
dest[6] = (int)(source[6] + source2[6]) >> 1;
dest[7] = (int)(source[7] + source2[7]) >> 1;
dest += width;
source += row_size;
source2 += row_size;
}
}
}
}
/*
*--------------------------------------------------------------
*
* DoPictureDisplay --
*
* Converts image from Lum, Cr, Cb to colormap space. Puts
* image in lum plane. Updates past and future frame
* pointers. Dithers image. Sends to display mechanism.
*
* Results:
* Pict image structure locked if displaying or if frame
* is needed as past or future reference.
*
* Side effects:
* Lum plane pummelled.
*
*--------------------------------------------------------------
*/
static void
DoPictureDisplay(vid_stream)
VidStream *vid_stream;
{
/* Convert to colormap space and dither. */
DoDitherImage(vid_stream->current->luminance, vid_stream->current->Cr,
vid_stream->current->Cb, vid_stream->current->display,
vid_stream->mb_height*16, vid_stream->mb_width*16);
/* Update past and future references if needed. */
if ((vid_stream->picture.code_type == I_TYPE) || (vid_stream->picture.code_type == P_TYPE)) {
if (vid_stream->future == NULL) {
vid_stream->future = vid_stream->current;
vid_stream->future->locked |= FUTURE_LOCK;
} else {
if (vid_stream->past != NULL) {
vid_stream->past->locked &= ~PAST_LOCK;
}
vid_stream->past = vid_stream->future;
vid_stream->past->locked &= ~FUTURE_LOCK;
vid_stream->past->locked |= PAST_LOCK;
vid_stream->future = vid_stream->current;
vid_stream->future->locked |= FUTURE_LOCK;
vid_stream->current = vid_stream->past;
ExecuteDisplay(vid_stream);
}
}
else ExecuteDisplay(vid_stream);
}
/*
*--------------------------------------------------------------
*
* ToggleBFlag --
*
* Called to set no b frame processing flag.
*
* Results:
* No_B_Flag flag is toggled from present value to opposite value.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
ToggleBFlag()
{
if (No_B_Flag) {
No_B_Flag = 0;
} else No_B_Flag = 1;
}
/*
*--------------------------------------------------------------
*
* TogglePFlag --
*
* Called to set no p frame processing flag.
*
* Results:
* No_P_Flag flag is toggled from present value to opposite value.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
TogglePFlag()
{
if (No_P_Flag) {
No_P_Flag = 0;
} else No_P_Flag = 1;
}